\(\int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx\) [356]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 183 \[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {\text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{8 b c^4}+\frac {\text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b c^4}-\frac {\text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b c^4}-\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^4}-\frac {\cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4} \]

[Out]

-1/8*cosh(a/b)*Shi((a+b*arcsinh(c*x))/b)/b/c^4-1/16*cosh(3*a/b)*Shi(3*(a+b*arcsinh(c*x))/b)/b/c^4+1/16*cosh(5*
a/b)*Shi(5*(a+b*arcsinh(c*x))/b)/b/c^4+1/8*Chi((a+b*arcsinh(c*x))/b)*sinh(a/b)/b/c^4+1/16*Chi(3*(a+b*arcsinh(c
*x))/b)*sinh(3*a/b)/b/c^4-1/16*Chi(5*(a+b*arcsinh(c*x))/b)*sinh(5*a/b)/b/c^4

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {5819, 5556, 3384, 3379, 3382} \[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {\sinh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^4}+\frac {\sinh \left (\frac {3 a}{b}\right ) \text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4}-\frac {\sinh \left (\frac {5 a}{b}\right ) \text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4}-\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^4}-\frac {\cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4} \]

[In]

Int[(x^3*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x]),x]

[Out]

(CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(8*b*c^4) + (CoshIntegral[(3*(a + b*ArcSinh[c*x]))/b]*Sinh[(3
*a)/b])/(16*b*c^4) - (CoshIntegral[(5*(a + b*ArcSinh[c*x]))/b]*Sinh[(5*a)/b])/(16*b*c^4) - (Cosh[a/b]*SinhInte
gral[(a + b*ArcSinh[c*x])/b])/(8*b*c^4) - (Cosh[(3*a)/b]*SinhIntegral[(3*(a + b*ArcSinh[c*x]))/b])/(16*b*c^4)
+ (Cosh[(5*a)/b]*SinhIntegral[(5*(a + b*ArcSinh[c*x]))/b])/(16*b*c^4)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5819

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {\cosh ^2\left (\frac {a}{b}-\frac {x}{b}\right ) \sinh ^3\left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c^4} \\ & = -\frac {\text {Subst}\left (\int \left (\frac {\sinh \left (\frac {5 a}{b}-\frac {5 x}{b}\right )}{16 x}-\frac {\sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{16 x}-\frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{8 x}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c^4} \\ & = -\frac {\text {Subst}\left (\int \frac {\sinh \left (\frac {5 a}{b}-\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4}+\frac {\text {Subst}\left (\int \frac {\sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4}+\frac {\text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^4} \\ & = -\frac {\cosh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^4}-\frac {\cosh \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4}+\frac {\sinh \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b c^4}+\frac {\sinh \left (\frac {3 a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {3 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4}-\frac {\sinh \left (\frac {5 a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {5 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{16 b c^4} \\ & = \frac {\text {Chi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right ) \sinh \left (\frac {a}{b}\right )}{8 b c^4}+\frac {\text {Chi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {3 a}{b}\right )}{16 b c^4}-\frac {\text {Chi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right ) \sinh \left (\frac {5 a}{b}\right )}{16 b c^4}-\frac {\cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 b c^4}-\frac {\cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4}+\frac {\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (\frac {5 (a+b \text {arcsinh}(c x))}{b}\right )}{16 b c^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.74 \[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {2 \text {Chi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right ) \sinh \left (\frac {a}{b}\right )+\text {Chi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {3 a}{b}\right )-\text {Chi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right ) \sinh \left (\frac {5 a}{b}\right )-2 \cosh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arcsinh}(c x)\right )-\cosh \left (\frac {3 a}{b}\right ) \text {Shi}\left (3 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )+\cosh \left (\frac {5 a}{b}\right ) \text {Shi}\left (5 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{16 b c^4} \]

[In]

Integrate[(x^3*Sqrt[1 + c^2*x^2])/(a + b*ArcSinh[c*x]),x]

[Out]

(2*CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] + CoshIntegral[3*(a/b + ArcSinh[c*x])]*Sinh[(3*a)/b] - CoshInteg
ral[5*(a/b + ArcSinh[c*x])]*Sinh[(5*a)/b] - 2*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]] - Cosh[(3*a)/b]*SinhI
ntegral[3*(a/b + ArcSinh[c*x])] + Cosh[(5*a)/b]*SinhIntegral[5*(a/b + ArcSinh[c*x])])/(16*b*c^4)

Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.81

method result size
default \(\frac {{\mathrm e}^{\frac {5 a}{b}} \operatorname {Ei}_{1}\left (5 \,\operatorname {arcsinh}\left (c x \right )+\frac {5 a}{b}\right )-{\mathrm e}^{\frac {3 a}{b}} \operatorname {Ei}_{1}\left (3 \,\operatorname {arcsinh}\left (c x \right )+\frac {3 a}{b}\right )-2 \,{\mathrm e}^{\frac {a}{b}} \operatorname {Ei}_{1}\left (\operatorname {arcsinh}\left (c x \right )+\frac {a}{b}\right )+2 \,{\mathrm e}^{-\frac {a}{b}} \operatorname {Ei}_{1}\left (-\operatorname {arcsinh}\left (c x \right )-\frac {a}{b}\right )+{\mathrm e}^{-\frac {3 a}{b}} \operatorname {Ei}_{1}\left (-3 \,\operatorname {arcsinh}\left (c x \right )-\frac {3 a}{b}\right )-{\mathrm e}^{-\frac {5 a}{b}} \operatorname {Ei}_{1}\left (-5 \,\operatorname {arcsinh}\left (c x \right )-\frac {5 a}{b}\right )}{32 c^{4} b}\) \(148\)

[In]

int(x^3*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/32*(exp(5*a/b)*Ei(1,5*arcsinh(c*x)+5*a/b)-exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b)-2*exp(a/b)*Ei(1,arcsinh(c*x)
+a/b)+2*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)+exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)-exp(-5*a/b)*Ei(1,-5*arcsinh(
c*x)-5*a/b))/c^4/b

Fricas [F]

\[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1} x^{3}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

[In]

integrate(x^3*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x^3/(b*arcsinh(c*x) + a), x)

Sympy [F]

\[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {x^{3} \sqrt {c^{2} x^{2} + 1}}{a + b \operatorname {asinh}{\left (c x \right )}}\, dx \]

[In]

integrate(x**3*(c**2*x**2+1)**(1/2)/(a+b*asinh(c*x)),x)

[Out]

Integral(x**3*sqrt(c**2*x**2 + 1)/(a + b*asinh(c*x)), x)

Maxima [F]

\[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1} x^{3}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

[In]

integrate(x^3*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(c^2*x^2 + 1)*x^3/(b*arcsinh(c*x) + a), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^3*(c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {x^3\,\sqrt {c^2\,x^2+1}}{a+b\,\mathrm {asinh}\left (c\,x\right )} \,d x \]

[In]

int((x^3*(c^2*x^2 + 1)^(1/2))/(a + b*asinh(c*x)),x)

[Out]

int((x^3*(c^2*x^2 + 1)^(1/2))/(a + b*asinh(c*x)), x)